Solving Ax=b using the Lanczos Algorithm with
' Selective Orthogonalization.

Horst Simon! end Beresford N. Parlett®,

ABSTRACT

This report is a description and a user guide for the FORTRAN
program LANSO. LANSO computes an approximate solution vector
for the system of linear equations Az = b, using the Lanczos tridi-
agonalization algorithm with selective orthogonalization. Here 4 is
a symmetric,real n xn matrix and b is a given n-vector. Since this
fdea is rather new the theoretial background for LANSO is dis-
cussed briefly. The structure and the subroutines of LANSO are dis-
cussed in detail, and a sample run of LANSO is given. The main
applications are to problems where the matrix A is large and
sparse,the cost of the matrix vector product dominates other
costs, and/or the matrix is not explicitly available.

1. Int.roduction.

In many applications one encounters the intermediate task of computing a

solution vector z to the systen of linear equations
Az =b , (1.1)

where A is a symmetric nxn matrix and b is an n-vector. If 4 is large and
sparse, there is an elegant way to exploit the sparsity by employing 4 only as a
linear operator which computes Av for any given vector v. There are several
methods known, which produce an approximate solution vector based only on
repeated computation of matrix vector products, e.g., the method of conjugate
gradients (CG) by Hestenes and Stiefel [1], the algorithm SYMMLQ by Paige and
Saunders [4], Lanczos’ method of minimized iterations (LAN), and the Lanczos
aléorithm with selective orthogonalization (LANSO) by Parlett [8].

All these methods have several attractive features in common. There are no
special properties needed for A, no acceleration parameters have to be

estimated, and the storage requirements are only a couple of n-vectors (e.g. 5
for

g Dept. of Hathematics, University of California, Berkeley, CA 84720.
Dept. of Mathematics and EECS Department, Dvizion of Computer Science, University of
California, Berkeley CA 94720.

-2-

the current implementation of LANSO) in addition to the demands of the opera-
tor A.

In exact arithmetic (c.f. [4]) all these methods produce the same approxi-
mate solution at each step. However they do differ in the way this approximate
solution is computed. Since in practice the actual implementations of CG,
SYMMLQ, and LAN are strongly affected by roundoff errors, the algorithms have
quite different properties. Because of roundoff certain wvectors which are
orthogoneal in exact arithmetic, cease to be so in finite precision artihmetic. But
this loss of orthogonality does not prevent the convergence of the mentioned
methods, it merely delays it. If however, the cost of a matrix vector multiplica-
tion dominates all other costs, then there is strong incentive to maintain a cer-
tain level of orthogonality and thus to keep the total number of calls on the

operator A to @ minimum.

In the case of the Lanczos nigorit.hm this goal is achieved through the tech-
nique of selective orthogonalization (SO), which was developed by Parlett and
Scott [7] for the eigenvalue problem. It amounts in storing the Lanczos vectors
at each step and maintaining orthogonality among them. The Lanczos vectors
are held in secondary storage. In order to maintain orthogonality and also to
assemble the final solution they have to be recalled, in sequence, from time to
time. Therefore one has also to include the cost of /0 operations in order to get

an overall picture of the cost eflectiveness of LANSO.

Another advantage of LANSO versus CG or SYMMLQ is that it can deal
effectively with both definite and indefinite systems.4 is called indefinite if it has

positive and negative eigenvalues.

The implementation of the Lanczos algorithm with selective orthogonaliza-
tion documented in this report closely follows the algorithm proposed by Parlett
[8]. There is a certain overlap between this report and the paper by Parlett. A
user, who wants to know more details about the Lanczos algorithm and SO is
referred to the book [5] by Parlett. For a user, who wants to use the program
LANSO only as a black box, it is sufficient to read section 3.1. and to consider

the sample run in the appendix.

The notation will be along the following conventions: small Greek letters for
scalars, small Roman letters for column vectors, capital Roman letters for

matrices.

-3-

2. The Lanczos Algorithm with Selective Orthogonalization for Solving Systems
of Linear Equations.

This section will provide a brief introduction into the theory behind LANSO.

Most of the computational details are omitted here and delegated to section 3.

2.1. The Lanczos Algorithm in Exact Arithmetic.
Generally speaking at the j-th step .ﬁthe Lanczos algorithm for solving (1.1)

has computed an orthogonal basis for a certain j-dimensional subspace of R™
and the projection of 4 onto this subspace. The approximate solution to (1.1) at
the j-th step is then the unique vector z; in the j-dimensional subspace whose
residual b — Az, is orthogonal to the subspace. At the j+1 -st step a new vector is
added to the orthngonal basis. In this way the approximate solution is found
from a sequence of subspaces of increasing dimension. At the latest, when j=n,

b — Az, must be zero in theory and z, is therefore the actual solutioh of (1.1).

The subspace under consideration is the Krylov subspace X7 of R™ defined
by

K? = span (b,Ab,A%,..A7"') | (2.1.1)

Results of Kaniel [2] show that in important cases the residual norm
|| b = Az; || becomes negligible for values of j much smaller than n. The Lanc-
zos algorithm is simply the application of Gram-Schmidt orthogonalization to
the vectors b,4b,4% - - -. On the first glance this appears to be a lot of work,
but there are two facts, which make life easy and Lanczos worth doing.

Suppose at the j-th step an orthogonal basis of Lanczos vectors g,,93,...95
for X7 has been computed. The g;'s form the columns of the nxj matrix
@; =(g, ' g;). Then the next task would be to orthogonalize 4’b egainst
g, ' - g;. Now some short considerations (c.f. Parlett[5]) show that it is only
necessary to orthogonalize Ag; against g, - - - g;. Furthermore Ag; happens to
be already orthogonal to g,.95...g;-z. So Ag; has only to be orthogonalized
against g;_, and g; using

Ty = Agy — 9505 — Qs1B; (2.1.2)

where oy = g;Ag;, f; = g;_,Ag;. Note that g,,gp....9;_p are not needed in (2.1.2).
The core of a Lanczos step is therefore surprisingly simple. r; still has to be nor-

malized to become gy,,. It turns out that | |r;|| = B4,

-4 -

"

The special choice of the Krylov subspace K7 still gives another reward. Tj,

the projection of A onto K7 in terms of €; is a tridiagonal matrix:

a1 Bz 0
Bz oz Ps
T; = QfAQ; = S - (2:1.3)
.« Bj-1 051 B
0

The key relationships between the quantities computed by the Lanczos algo-

rithm in exact arithmetic can be summarized in the three equations:

L -@ =0 (R.1.4)
AQJ = Qj TJ = Tje; (2 1.5)
Q;T'J‘ =D (2. 1.6)

Here e;(or ef)) is the j-th column of the jx; identity matrix J;. The algorithm
is started by setting go = 0 and 7y = b. It should be noted that the actual com-
putation of the quantities g;,a;,8; is done in a different order as in the above

representation (c.f. section 3.3).

The next question is of course how to get the approximate solution vector z;
from the Krylov subspace K?. In terms of €; and T; z; can be characterized as

follows

:j = QJ TI_IQj‘b . (2.1.?)

Equation (2.1.7) says that z; can be obtained by projecting the right hand side b
onto X7, then solving in K7 the system T;fi = Q_,»’b ‘where Tj is the projection of
A, and finally expressing f; in terms of the original space by forming z; = @; f;.
Note that @b =e{/) 8, , since g, = b/§,.

It'is not clear that z; defined by (2.1.7) is identical to the approximate solu-
tion defined at the beginning of this section, i.e that Ar; — & is orthogonal to K.
Using (2.1.4), (2.1.5), and (2.1.7) it follows that

AIJ' -b = AQJ' Tj"IQj‘b -b
= (QJT:‘.I + TJ'EJ")TJ'_IQ;b - b
=r; e;TJ.'I Q;b (2.1.8)

=r;e/Ti e g,

=Tig;

where ¢; denotes the j-th corn;}onent of the vector f;. Thus the residual Az; — b
is a scalar multiple of the vector r; and by (2.1.8) indeed orthogonal to K;.

By taking norms in (2.1.8) another key formula is obtained:

[1Az; =0 || = |Ir5¢;1] = Bl e;l (2.1.9)

This shows that the norm of the j-th residual can be found without forming expli-
citly z; or the residual. It is not even necessary to compute f; at each step in

order to find ¢;. The details are in section 3.5.
Contrary to CG and SYMMLQ it is not necessary to update an approxirnate

solution vector at each step. Only the scalar p; = Bi+1l¥;| has to be monitored.
Only when some p; becomes sufficiently small does the jxj system T;f; = e g,
have to be solved. At this point it should be mentioned that if A4 is indefinite the
5’3 may have negative eigenvalues and we must take care in solving this system.

The details are explained in section 3.7 .

Finally the approximate solution z; has to be computed. It is only here that
the Lanczos vectors g,,9z, - * - gj-z are needed since z; has to be assembled by
forming z; = @; f;.In the present implementation the Lanczos vectors are writ-
ten into secondary storage as soon as they are computed and, at the end,

recalled one by one in order to form z;.

2.2. Selective Orthogonalization.

A detailed account of the behaviour of the Lanczos algorithm in the pres-
ence of roundoff and of selective orthogonalization (SO) is available in Parlett
[5]. Therefore in this section only the basic facts about SO will be presented to
explain LANSO.

From now on let a;,8;,9; etc. denote the corresponding quantities as they
are computed, not their ideal counterparts. Let £ be the roundoff unit. The basic
equations (2.1.4)-(2.1.6) are now perturbed by roundoff. Although for each j
(2.1.5) is only slightly perturbed, the relations (2.1.4) and (2.1.8) completely fail
after a certain number of steps depending on £ and on A. The Lanczos vectors,
which are orthogonal in exact arithmetic, not only loose their orthogonality, but

even become linearly dependent.

For a long time, as a remedy against this loss of orthogonality, it was sug-

gested to reorthogonalize each new g; against all previous Lanczos vectors,

..

which is of course very expensive. The results of Paige [3] give some better
insight in the way how orthogonality is lost, and provide the theoretical basis for

S0.

In order to explain Paige’'s results it is necessary to introduce certain quan-
tities which are not of direct interest when solving Az = b. Let ¥{) be the eigen-

values and s,U) be the corresponding normalized eigenvectors of T;
T;s{) = s{s() £ & Lof - (2.2.1)
From these one can compute the Ritz vectors 4,0) by
¥ = g;s (2.2.2)

These quantities change at each Lanczos step. If there is no confusion possible
the superscripts will be dropped. The pairs ({3) i=1,...,j are approximate
eigenpairs of A. The quality of this approximation can be determined by consid-
ering the residual ||A4y; —v;%:| |- Applying (2.2.2) one finds that, to within

roundoff,

| | Ay: — w0l < Bs + | | Fyl| (2.2.3)

where B; = Bj+15; and s5 = ej'st-. i.e., the bottom element of the corresponding

eigenvector of 7;. The B;; play an important role in the process of SO.

Now everything is ready to state one of the most important consequences of
Paige's work, which can be summarized as follows: loss of orthogonality among
the Lanczos vectors is equivalent to the convergence of a Ritz pair. In other
words, if one of the g; becomes small, the corresponding Ritz pair converges to
an eigenpair of A and the Lanczos vector g;,, loses its orthogonality to g,,..g; 2.
But more is known about how g;,, behaves, it is tilted towards yY) while it is
retaining its previous level of orthogonality to all other yU)k #i. In order to
maintain a certain level of orthegonality it is therefore only necessary to orthog-
onalize the new g;,,, or equivalently the unnormalized r; against yU) when the
Bji become smaller than some threshold. So first compute 7'; (compare 2.1.2)
by

T'J' = qu — Q'jﬂ.j] Qj—lﬁj (224)

as usual, then check if any B is small. If so then compute the corresponding

vY) and orthogonalize r'; against it obtaining

TJ- = T'J' - y.‘UJE‘U) (2,25)

where
)=y 07 ||y |2 (2.2.8)

This requires the formation of y; = @;s;. The payoff for the expensive calculation
comes later when subsequent Lanczos vectors, say g;4;5 and gj.+30 need to be
orthogonalized against y;, since a certain number m of Ritz vectors are also put
in secondary storage and need not to be formed again. The question of how many
Ritz vectors to keep, and whether to keep them in core in case the optimal

number is small is still under investigation.

Finally it should be mentioned that the threshold for which a B;; is con-
sidered to be small is set to be V&||7j|| in the present version of LANSO. This
choice was based on the computational experience for the eigenvalue problem
[7]. An analysis in [5] shows that this guarantees a certain level of orthogonality
among the Lanczos vectors. The remaining computational details are discussed

in section 3.6.

3. The Linear Equation Solver LANSO

The linear equation solver LANSO was developed and tested on the DEC VAX
11/780 of the Computer Science Division of the EECS Department at the Univer-
sity of California at Berkeley. It is coded in FORTRAN. There exists only a double
precision version of the program, but it should be no problem to convert it to
single precision. Throughout this section all FORTRAN variables are assumed to
be of type DOUBLE PRECISION unless otherwise mentioned.

3.1. Usage of LANSO - The Subroutine LANCDR

A prospective user who is not interested in further details has to do only
two things in order to compute an approximate solution vector for a system of

linear equations:

* provide a subroutine MATMUL which accomplishes the matrix vector multi-

plication,
* write a main program which calls the subroutine LANCDR

An example is given in the appendix. The subroutine MATMUL has to be of the
farm

SUBROUTINE MATMUL(U,V.N)
DIMENSION U(N),V(N)

Upon calling this subroutine, MATMUL has to compute v + Au and write the

result

in v. This somewhat unusual form saves one n-vector storage (cf. section

3.3). There are no restrictions on the way Av is formed, which is one of the

advantages of the Lanczos algorithm.

The header for LANCDR is

WORK
FAC

ISPC

SUBROUTINE LANCDR (B,X,WORK,FAC,ISPC,N,M,LMAX,NTQ,NTR,IRES)

is an array of dimension N, which contains the right hand side on input.

The value of B is changed on output.

is an array of dimension N, which contains an initial guess for the solu-
tion. If no initial guess is known, X has to be set to zero. On output X con-

tains the approximate solution vector.
is an array of dimension ISPC,providing the necessary workspace.

is a number between 0 and 1. It denotes the factor by which the user
wants to reduce the residual norm. After successful computation the
solution vector in X satisfles ||Az = b || < FAC||b||. A word of caution
on the use of FAC. If for example LANCDR is called with FAC = 10~* and
successfully computes a solution vector in X, then this does not mean
that the result in X is correct to four digits. If for example the condition
number of A is 10%° the computed solution might not have a single

correct digit.
is an integer, which denotes the dimension of the workarray WORK. At

least 3 n-vectors and 10 j-vectors workspace are needed. Therefore ISPC
has to be larger than 3N+ 10LMAX+1

is an integer, the dimension of the matrix 4.

is an integer which roughly speaking, controls the amount of SO. (It is
the number of Ritz vectors kept in secondary storage.) If one sets M=0
no SO will take place. The numerical experience so far has shown that
M=8 or M=4 is a reasonable choice. M should be chosen larger, if it is
known that the matrix 4 has several (more than 8) well separated eigen-
values at the end of its spectrum, or if a previous run of LANSO did not
produce a good solution after a reasonable amount of time. The role of M

=g

is still being investigated. In a final version of the program it will be set

automatically.

IMAX is an integer which denotes the maximum number of Lanczos steps a

user is willing to take.

NTQ,NTR,are integers which denote the channel number of the 1/0 unit for Lanc-
zos vectors(NTQ) and Ritz vectors(NTR). It might be necessary to adjust
the 1/0 operations to the local system.

IRES is an integer. If IRES=0 the required reduction of the residual norm was
achieved within LMAX Lanczos steps.The solution in X is accurate within
the limitations mentioned above(see FAC). If IRES=1 the program
exceeded LMAX Lanczos steps. X still contains an approximate solution

vector.

Since the work on LANSO is not yet completed this parameter list will be

simplified in future.

The subroutine LANCDR only partitons the workspace WORK and calls the
subroutine LANSOL, which is the core of the program.

3.2. The Subroutine LANSOL

The subroutine LANSOL has the following structure (for the notation see

chapter 2):

1. Initialization

set control parameters

2. Loop: for J < LMAX do
2.1 Simple Lanczos step
2.2 Analyze T;
2.3 Update residual norm p;
2.4 Selective orthogonalization
2.5 Check: if p; < TOL go to 3.

3. Solve T,‘f:’ - elﬁl

4., Assemble solution: zj = Qa'fj

-10 -

Presently LANSOL is in modular form. Almost all the above steps are seperate

subroutines. In a final version this concept may be dropped for efficiency.

In the initialization step the guess for the solution z; is used as follows: the
residual 7 = b — Az, is formed. Then only the system Az, = r is solved for the
correction z,. The Lanczos algorithm is initialized by g « 0 and 8, « | || |. The
vectors g and r correspond exactly to the g; and 7; in section 2.1. The tolerance
TOL is set to be

TOL = maz (FAC,t)| |b]]

3.3. Simple Lanczos Step - The Subroutine LANSIM

The subroutine LANSIM performns a simple Lanczos step according to the
description in section 2.1. The following algorithm is used at the j-th step:

T -r/€_,-

q “« —q8;

q «q + Ar
swapg and 7

Q; «q'r

T o Al

Bis1 <« |lIr]|

This somewhat peculiar form has two advantages: It uses only two n-vectors, and
it follows the form of the algorithm, which was recommanded by Paige [3] as
least susceptible for roundoff. At the end of a simple Lanczos step the newly

computed Lanczos vector g is written into secondary storage.

3.4. Analyze T; - The Subroutine ANALZT

The purpose of this subroutine is to compute the eigenvalues of T; and the
corresponding B;;. Presently a straight forward approach is used, i.e., at each
step a subroutine TRIDQL is called, which performs the Ql-algorithm for 7; and
computes all the eigenvalues of 7;. Then all the g; are computed via the
corresponding eigenvectors using a simple recurrence. This is far from optimal
and an improved version of ANALZT is almost completed. This new version will
use a more sophisticated updating technique, where only the ¥; and g; are com-

puted, which are of interest for SO.

-11 -

3.5. Updating the residualnorm p; - The Subroutine UPRES.

In order to find the residual norm p; = B;4,|¢;|, where g; is the bottom ele-
ment of the solution vector f; of the tridiagonal system of equations
T;f; = e1fy, theoretically one would have to solve this linear system at each
step. But as 7; differs from T;_, only by the last row and column this is not

necessary.

In UPRES at the j-th step the matrix 7; is implicitly premultiplied by a
scaled rotation matrix (cf. [5],pg.100), designed to make the element in position
of the new g; zero. Thus 7j is reduced to upper triangular form, but only impli-
citly. Only the effect of this operation on the last diagonal element and on the
bottom element of the right hand side is stored in the global variables DELTA
and GAMMA. Their ratio then yields ¢;, and DELTA and GAMMA as well as TT pro-
vide the necessary information for continuing the implicit reducticon at the next
step. The scaled rotations were used, since for indefinite A an almost singular
T; may occur and an ordinary LLT decomposition of T; might either brake down

or produce erroneous results.

3.6. Selective Orthogonalization - The Subroutine SELORT

SELORT will be desribed here on a general level, since the intrinsic details

would require more theoretical background than section 2.2 provides. Thereisa .

basic distinction between Ritz values which have already converged and those
which have not, but might do so within the next few Lanczos steps. The former
are called good Ritz values, the latter are called bad Ritz values. The good Ritz
values are stored in GRITV, all Ritz values good and bad are also stored in RIT-
VAL. Initially, when no Ritz value has converged yet, GRITV is empty.

The first step in SELORT is to check whether any of the good Ritz values has
produced a small 8 at the present Lanczos step. This is done by updating the
arrays TAU and OLDTAU according to a recursion formula in [6]. If any of the
TAU's gets small, this indicates a small 8;; and a SO has to be performed accord-
ing to (2.2.5) and (2.2.8). Such an SO is called of the first type.

The second step in SELORT is to check certain of the bad Ritz values for a
small B;;. Which ones are to be checked is determined by the integers ICL and
ICR. The mechanism behind ICL and ICR is explained in [5] and [6]. If any of the
bad Ritz values really has converged,i.e., has a small 8, a SO will be performed.
Then the converged Ritz value which has become good, will be added to the good
Ritz values in GRITV and ICL and ICR are updated.

-12 -

For each SO of the second type a new Ritz vector has to be computed.
These Ritz vectors are written into secondary storage and from then on associ-
ated with the good Ritz values. Therefore these Ritz vectors are already available
if a SO of the first type has to be performed, and do not have to be recomputed.
The maximum number of good Ritz values and vectors to be kept is determined
by the parameter M. After M Ritz vectors have been computed no more SO of the

second type takes place. SO's of the first type will be still performed.

The idea behind this mechanism is that certain Ritz wvalues, usually
corresponding to the extreme eigenvalues of A, will force SO's very often. These
are also the ones which will converge first. It is therefore often necessary to
orthogonalize against the corresponding Ritz vectors and their expensive recom-

putation has to be avoided.

Finally it should be mentioned that each SO changes the elements of the
matrix 7; slightly. How SO affects the structure of 7; is again explained in [8].
These changes and their possible effects on p; and the solution vector f; are
recorded in CHALF, CHBET, and CHF by calling the subroutine UPDATE.

3.7. Solving 7;f; = e,f, - The subroutine TRISOL

The subroutine TRISOL is a general purpose subroutine for solving ill condi-
tioned symmetric tridiagonal systems. As for UPRES, fast scaled rotations are
used. The subroutine has the additional feature that the elements of 7; are
unchanged. All information (the cotan of the angles of rotation) is stored in the
array COT.

=19

References

[1]

(2]

(3]

(4]

[5]

(6]

(7]

M.R. Hestenes and E.Stiefel, Methods of Conjugate Gradients for Solving
Linear Systems, J.Res.Bur.Standards, 49, 409-436 (1952).

S. Kaniel, Estimates for some Computational Techniques in Linear Algebra,
Math. Comp. 20,369-378 (19686).

C.C. Paige, Computational Variants of the Lanczos Method for the Eigen-
problem, J.Inst.Math.Appl. 10,373-381 (1972).

C.C. Paige and M.A.Saunders, Solution of sparse indefinite systems of linear
equations, SIAM J.Num.Anal. 12, 617-829 (1975).

B.N. Parlett, The Symmetric Eigenvalue Problem , Prentice-Hall, Englewood
Cliffs (1980).

B.N. Parlett, A New Look at the Lanczos Algorithm for Solving Symmetric
Systems of Linear Equations, Lin.Alg.Appl.29, 323-346 (1980).

B.N. Parlett and D.Scott, The Lanczos Algorithm with Selective Orthogonali-
zation, Math.Comp.,33, 217-238, (1979).

Appendix
As a first example consider the matrix A = (ay;) where

4 ifi=j
ay={-1 ifi=j+1 ,i=j-1,i=4+15, i=j-15
0 otherwise
The correct solution is z = (1,1,......,1)°, the right hand side vector b is gen-

erated by calling matmul once. The dimension n=100, and the other input
paramaters can be directly read off from the following program listing:

program main

implicit double precision (a-h,o0-z)
dimension b{100),x(100)
dimension work(1100)

c.. initializing'data for lancdr

n=100
lmax=60
ntg=8
ntr=9
m=8
ispc=1100
fac=1.0d-6
do 10i=1,n
x(i)=1.0d0
b(i)=0.0d0
10 continue
call matmul(x,b,n)
do 11i=1,n
x(i)=0.0d0
11 continue
write (8,8000)
write (8,9010) n
write (6,9011) Imax
write (6,8012) fac
write (8,9013) m
call lancdr(b,x,work, fac,ispc,n,m,lmax,ntq,ntr,ires)
if (ires.eq.0) write (8,9005)
if (ires.eq.1) write (6,9007)
write (8,9004) (x(i) , i=1,n)

c.. computing relative error

err=0.0d0
do20i=1,n

20 err=err+(1.0d0-x(i))**2
err=dsqrt(err)/100.40
write (6,8020) err
stop

B 00 0D 00 L) 6D GG LI NI IO DU NI DD IO RO IO DD b b 5 bbb 1d b b b bt -
CODNRNEONROOBNRNAUN L OCODANNADN O PRI RLON

-2-

41 9000 format (/,3x,” Solving Ax=b with the Lanczos algorithm ",//)
42 9004 format (d26.18)

43 9005 format (/," residual norm became gmall, solution vector = ",//)
44 9007 format (/," maximum number of Lanczos steps exceeded, approx. solu

45 ition vector = ",//)

468 9010 format (/," Number of Equations = ",i5,/)

47 9011 format (/,"” Max. Number of Lanczos Steps = ",i5,/)

48 9012 format (/,” Factor for reducing res.norm = ",d12.4,/)

49 9013 format (/,” Max. Number of Ritzvectors kept on tape = ",i4,/)
50 9020 format (/," Rel. Error in the solution = ",d12.4,/)

51 end

52

53 subroutine matmul (u,v,n)

54 implicit double precision (a-h,0-z)
55 dimension u(n),v(n)

58 nml=n-1

57 v(1)=v(1)+4.0d0*u(1)-u(2)

58 do 10i=2,nm1

59 v(i)=v(i)+4.0d0*u(i)-u(i-1)-u(i+1)
60 10 continue

81 v(n)=v(n)+4.0d0*u(n)-u(nm1)

82 nml15=n-15

63 do 11i=1,nm15

64 v(i)=v(i)-u(i+15)

85 v(i+15)=v(i+15)-u(i)
86 11 continue

87 return

68 end

The subroutine matmul shows how the special form of this matrix can be
exploited. For this example no additional storage for the matrix A is necessary.
Here LANSO computes the approximate solution in 25 steps without performing
an selective orthogonalization.

As a second example a matrix M is considered, which is obtained from the
diagonal matrix A = diag (A Ag......Aj00) by & similarity transformation of the
form M = PAP. Here P is the reflector / — 2yww°’, where the n - vector w was
chosen at random. ¥ has the eigenvalues

10[i/3]+1, i=1,..,90
=1 1900 + 1, i=91,.,100 ,

where [i/ 3] is the largest integer not exceeding -%- The matrix M is actually a

full matrix, but the special choice of the reflector P makes it possible to store it
in implicit form in only three arrays of dimension(100),(c.f.[5,pg.119]). Although
the matrix M is never explicitly computed, LANSO can solve solve Mz = b. As
before the solution vector is z = (1....,1)", and the right hand side is computed

by calling matmul. The other parameters can be found directly in the program
listing:

B s B W WWWWWWWWNNNNNNDN NN DN - b b et b b =gy oo DN -
twmmommﬂmu-ﬁmmwomm-qmm-hmmwommqmmbmm-—-D“’

GV LU DR A A
WU O OO0,

o00w

10

11

20

program main

implicit double precision (a-h,0-z)
dimension b(100),x(100)

dimension work(1100)

common /mat/ d(100),w(100),p(100)

setting up data for matrix

do 1i=1,80
d(i)=10.0d0*dfloat(i/3)+1.0d0
do 2i=91,100
d(i)=1800.0d0+dfloat (i)
do 3i=1,100
w(i)=runi(1.0d0)
gamma=2.0d0/dot(w,w,100)
do 4i=1,100
p(iy=gamma*d(i)*w(i)
delta=0.5d0*gamma*dot(w,p,100)
do 5i=1,100
p(i)=p(i)-delta®w(i)

initializing data for lancdr

n=100

lmax=80

ntq=8

ntr=9

m=6

ispe=1100

fac=1.0d-8

do 10 i=1,n
x(i)=1.0d0
b{i)=0.040

continue

call matmul(x,b,n)

do 11i=1.n
x(i)=0.0d0

continue

write (8,9000)

write (6,9010) n

write (6,9011) lmax

write (6,9012) fac

write (6,9013) m

call lanedr(b,x,work,fac,ispc,n,m,lmax,ntq,ntr,ires)

if (ires.eq.0) write (8,9005)
if (ires.eq.1) write (6,9007)
write (6,9004) (x(i) , i=1,n)

computing relative error

err=0.0d40

do20i=1,n
err=err+(1.0d0-x(i))**2

err=dsqrt(err)/100.d0

55 write (8,9020) err

56 stop

57 9000 format (/,3x," Solving Ax=b with the Lanczos algorithm ",//)

58 9004 format (d26.18)

59 8005 format (/," residual norm became small, solution vector = ",//)
80 8007 format (/," maximum number of Lanczos steps exceeded, approx. solu
81 ition vector = ",//)

82 8010 format (/," Number of Equations = ",i5,/)

83 9011 format (/,” Max. Number of Lanczos Steps = ",i5,/)

84 9012 format (/," Factor for reducing res.norm = ",d12.4,/)

85 9013 format (/,” Max. Number of Ritzvectors kept on tape = ",i4,/)
86 9020 format (/,” Rel. Error in the solution = ",d12.4,/)

87 end

68

89 subroutine matmul (u,v,n)

70 implicit double precision (a-h,0-z)
71 dimension u(n),v(n)

72 common /mat/ d(100),w(100),p(100)

73 templ=dot(u,p.n)

74 temp2=dot(u,w,n)

75 do 10i=1,n

76 10 v(i)=v(i)+d(i)*u(i)-temp1*w(i)-temp2*p(i)
i L return :

78 end

LANSO takes 37 steps to find the solution to the required accuracy.

PR |

OUTPUT FOR EXAMPLE 1

ES=E=S=SESSESSSSS=S==S

Solving Ax=b with the Lanczos algorithm

Number of Equations = 160

Max. Number of Lanczos Steps = 60

Factor for reducing res.norm = . 1000e-05
Max. Number of Ritzveotors kept on tape =
residual norm became small, solution veotor =

. 9999996370838 17405¢ +00
.99999975977407 145 1 0 +00
.999999526580549289¢ +00
L 1000000200 16811733e+01
. 1000000 14506565535e+01
. 100000025057870801e+01
. 999999833306 143926 e +00
. 100000008249720648e+0 1
.9999998484S5 151151 1e+00
. 100000005 1595 1000Se+0 1
. 1000000 18989151521 e+01
. 1600000 14946928509e +0 1
. 100000038902233354e+01
. 1000000VS965066255e+0 |
.999999939745708244 0 +00
.999999659002722496 0 +00
. 9999997 184387038776 +00
. 100000009394325035e +0 1
L 100000029142185756e+01
. 10000003204290902Ge +0 11
. 100000028993623713e+01
.999999834648724728e +00
L999999752075759194e +00
.999999453226656059%¢ +00
.99999955443560-1909e +00
,999999733055768083e +00
. 100000000687025023e+01
L 10000G0-183701391 1 1e+01
L 10000DV3T7V2957034 1 e+0]
L 1D0000O 1S 1694245950 +0 |
L 10000000 1875801 1560 +01
. 999959539039896058 ¢ +00
A0GOOUNNSIGT2515879e+0 |
1000000 19650787603 +0 |
. 1000VOV35297968679%e +0 1

6

. 1000000 13969025162e+01
L100D0D012121468090e+0 1
LU9999 710072721222 100 +00
L999990G92 33 152 1484 e +00
LOULIULISSUTEA25 | Ler00
SO IO9725015 10906 | e +00
NOVULGOGUSGOS26440e +0 |
. 10000VVLISHITSS7900+0 |
L DOVODDOS3S64985153e+01
000002 27.15163697e+0 1
L 999999595 1 56535-170e +00
L0949 TS20274864 e + 00
L9995997 161S43 10730 +00
LY999D9007990 1 299985 +00
O 1574085 189e +0 |
OO EAST-I085186e +0 |
L399999974990 1300073 ¢ +00
L9990 7 160843108 19e +00
L9 090R07520274908 e +00
LO0095H05 136535492 +00
L AOODOLO2 275163702 +0 1
AOONOODSEZSG 1955 1560+0
L ODOUDUSSEITSET796e+0 |
L AOHN0GS0VOGDOS26437e +0 |
LA 72509 13 10906 1e+00
LONNVES33507842467 ¢ +00
LFIIDYLGUILTEIS2 148de +00
LONONGI 707221222320 +00
OO 2 12 465085 +0
LAOODDOD VG025 159e +0 |
L ACOULOBS207965679¢ +0 |
L ANODDOO TIGSOTSTEOS e +0 1
LA JOUODBOSSG725 1890 +0 |
9009995 32003989G | 10e +00
LU0 EETSR0 1 16de+01
L0 S 1GO42460 1 e +O
L INODODOZTN29570335e +01
A GOGUOESEST0 1391 L e +O]
. 10ODO0DNDNGS 7025029 +0 |
LU DOOTLNT6S 1 28e 00
L 9944994551 4356048650 +00
oA GO 2G656U37e+00
LALCOOGTEINTSTSI 194 e +00O
LONUNYYEEITIST24728e +00
U002 HSO36237 1301
- 100D00032042909026e +0 1
L TOONNN029 142 185756e+0 1
. 100D00009394325040e +0 |
L 9999997 13438703900 +00
L0099955550U272254 e +00
.999999939745705266¢ +00
+ 1000000N59G5066258e +01
. 10VBV0O38902233360e+0 1
. 1000000 14946928506 +0 |
L JUVVOVO 18989151521 e+01
. 100000005 1595 10000 +01
.99999984848 151 1533 +00
. 100000008249720648e +0 1
. 999999833306 143926¢ +00

. 180000025057870801e+0 |
« 1000000 1 45065658400 +0 |
. 1800000200168 1 1730e +01
- 993999826580549378e +00
. 99999975977407 1473 ¢ +00
- 9999996370838 174286 +00

Rel. Error in the solution =

.25360-07

OUTPUT FOR

EES=E===E

EXAMPLE 2

sE=sa=E=

Solving Ax=b with the Lanczos algorithm

Number of Equations = 100
Max. Number of Lanczos Steps = 60
Factor for reducing res.norm = . 1000¢-05

Max. Number of Ritzvectors kepl on tapo =

residual norm became small, solution veclor =

9999995639271 1 1488 +00
.99999986392096-7 16e +00
. 10000000 1900409702e +01
. 18000000 1899048524¢+@1
. 10000000 1897568491 e+01
.99999993692247262 1e+00
.999999936909260279e +00
.99999993689-18426 12e +00
. 10000002 1971542860 +01
. 10000002 1970864 1206+01
. 10000002 1966832375e+01
. 9999993255538 1 5968 +00
9999993255569 104260 +00
.999999325623372726e +00
. 100000 174537373560 +01
. 100000 174512040407 +01
. 100000 1744839497 19¢+01
.999906234638208925e+00
,999996235222299767¢ +00
.999996235875080974e +00
. 1000D0669363873743e+01
. 160000669 1967942150+01
. 1000VU669005239182e+01
.999990352898234 169 +00
999990356 13766709 1 +00
,9999903598385567530 +00
. 10000 10860697446 10e+01
. 10000 1085452205890e +01
. 10006 1084800300200 +0 1
. 99999 | 303205643-123e +00
.99999 1310247 189924 +00
99999 1318592492884 e +00
. 100000324247 106470 +01 o
. 100000323735099389¢ +0 |

L 1000003231 10496561e+01
. 100000238302206905¢+0 1
L I00N00287-12926365 1e+0 1
L 1000002863 15340945 +0 |
LOM9392G6757515328¢+00
L 99999396 155880229 1 e +00
LO0D940089344 1 1527 +00
. 1000001181970 19129 +01
100003957 1208763 +0 1
L AGID002T705-673532e +0 1
L 00DUNUGA2 144972 1 1e+D]
. 1I0U0UDOGO-1904-19 402 +O |
OUOOGO-I26196704 1 2e+0 |

9999994 19382 1940990 +00
L LODDVLCSOT 4TSS 1 3e+0 1

L OODUN264152592533e+0 1
LG9S 22092653575e +00
L HOGOO 19701274357 e +0 1
L IHOONS TO369343623e +0 1

SEDYN2 128412 167959 +00
RO GCIHA92 1S5 10T e +00
L0091 32305229543 +00
LO0UOUG 750829 1488 e +00
LGOSG6ET253096 10500 +00
LO0NI4G629364000467 e + 00
AODDNS 125327763426 +0 1

L OGHDNS 16G637525:43e+0 1|

L A0OGDOS 195529287 79e+0 1

LSO9S 190G
SRS IE005 Y .
LOIINSIGET7SY2 12073 +00
A3 2635192 168 e +0]

LA000UN327114813153e+01

CHREHNGE 27725637425 +01

LONLRZGTON23BTSE2e +00
LU 262 177535462 +00
LGO9L2GIGG53 1303 7e +00
L RIDUDU 7 169476967 Te +0 |

AGLTNGO7 1750890809 +0 |

D07 ISS 71 16762e+0 1

e 05070051 15056340 +00
SAI7GNSET-IS6586e +00
AO7GU626G005435e +00
& WNDDS7S2013424e+0 1

L HOGOGOONSTYU796:1558e +0 |

L H0GHL000SE 124G 18236 +01

L 99999998646 136 176 7e +00
LAOO0SU9986555885954e +00
LOIYYIIRG6-18372508 +00
LO99999999507 1826 16e+00
L U995999005064-49453e +00
.99999999995975 1440 +00
L 999999598334980 167 e +00
L 999999998397753 198 +00
L 999999998456 1864 | 2e +00
LU LG0T 32e +00
PR L 157715016 1e+00
LINUOGDYA2IS2488] 1e+00
L OGHLDULNY 1 2736G054e+0 |

LG N0 08435428750 +00
LA R 5A5833502 e +00
R OO 488240 +0 |
L N0 IGH9T262 160 +00

Rel.

09095000391 725600 +00

GOUUVOV054628 1 4e +00

;5U09999U357640876 +00

Ervor in the solution =

.46230-06

